4 th Semester	REE4D002	Signal and Systems	L-T-P	3 CREDITS
			3-0-0	

MODULE – I (7 Hours)

Discrete-Time Signals and Systems:

Discrete-Time Signals: Some Elementary Discrete-Time signals, Classification of Discrete-Time Signals, Simple Manipulation, Discrete-Time Systems : Input-Output Description, Block Diagram Representation, Classification, Interconnection.

MODULE – II (8 Hours)

Analysis of Discrete-Time LTI Systems: Techniques, Response of LTI Systems, Properties of Convolution, Causal LTI Systems, Stability of LTI Systems; Discrete-Time Systems Described by Difference Equations; Implementation of Discrete-Time Systems. Correlation of Discrete-Time Signals: Cross correlation and Autocorrelation Sequences, Properties.

MODULE – III (10 Hours)

The Continuous-Time Fourier Series:

Basic Concepts and Development of the Fourier series; Calculation of the Fourier Series, Properties of the Fourier Series.

The Continuous-Time Fourier Transform:

Basic Concepts and Development of the Fourier Transform; Properties of the Continuous-Time Fourier Transform.

MODULE- IV (10 Hours)

The Z-Transform and Its Application to the Analysis of LTI Systems:

The Z-Transform: The Direct Z-Transform, The Inverse Z-Transform; Properties of the Z-Transform; Rational Z-Transforms: Poles and Zeros, Pole Location and Time-Domain Behavior for Causal Signals, The System Function of a Linear Time-Invariant System; Inversion of the Z-Transforms: The Inversion of the Z-Transform by Power Series Expansion, The Inversion of the Z-Transform by Partial-Fraction Expansion; The One-sided Z-Transform: Definition and Properties, Solution of Difference Equations.

MODULE- V (10 Hours)

The Discrete Fourier Transform: Its Properties and Applications:

Frequency Domain Sampling: The Discrete Fourier Transform; Properties of the DFT: Periodicity, Linearity, and Symmetry Properties, Multiplication of Two DFTs and Circular Convolution, Additional DFT Properties.

Books:

- **1.** Digital Signal Processing Principles, Algorithms and Applications, John. G. Proakis and Dimitris. G. Manolakis, 4th Edition, Pearson.
- 2. Fundamentals of Signals and Systems M. J. Roberts, TMH
- 3. Signal & Systems by Tarun Kumar Rawat, Oxford University Press.
- 4. Signals and Systems A NagoorKani, TMH
- 5. Signals and Systems, Chi-Tsong Chen, Oxford
- 6. Principles of Signal Processing and Linear Systems, B.P. Lathi, Oxford.
- 7. Principles of Linear Systems and Signals, B.P Lathi, Oxford