4 th Semester	REC4C002	Digital Systems Design	L-T-P	3 CREDITS
			3-0-0	

MODULE – I (10 Hours)

Revision of Number System: Introduction to various number systems and their Conversion. Arithmetic Operation using 1's and 2's Compliments, Signed Binary and Floating Point Number Representation Introduction to Binary codes and their applications.

Revision Boolean Algebra and Logic Gates: Boolean algebra and identities, Complete Logic set, logic gates and truth tables. Universal logic gates, Algebraic Reductionand realization using logic gates

MODULE – II (11 Hours)

Combinational Logic Design: Specifying the Problem, Canonical Logic Forms, Extracting Canonical Forms, EX-OR Equivalence Operations, Logic Array, K-Maps: Two, Three and Four variable K-maps, NAND and NOR Logic Implementations.

Logic Components: Concept of Digital Components, Binary Adders, Subtraction and Multiplication, An Equality Detector and comparator, Line Decoder, encoders, Multiplexers and De-multiplexers.

MODULE – III (8 Hours)

Synchronous Sequential logic Design: sequential circuits, storage elements: Latches (SR, D), Storage elements: Flip-Flops inclusion of Master-Slave, characteristics equation and state diagram of each FFs and Conversion of Flip-Flops. Analysis of Clocked Sequential circuits and Mealy and Moore Models of Finite State Machines.

MODULE – IV (9 Hours)

Binary Counters :Introduction, Principle and design of synchronous and asynchronous counters, Design of MOD-N counters, Ring counters. Decade counters, State Diagram of binary counters. **Shift resistors**: Principle of 4-bit shift resistors. Shifting principle, Timing Diagram, SISO, SIPO, PISO and PIPO resistors.

Memory and Programmable Logic: Types of Memories, Memory Decoding, error detection and correction), RAM and ROMs. Programmable Logic Array, Programmable Array Logic, Sequential Programmable Devices.

MODULE – V (7 Hours)

IC Logic Families: Properties DTL, RTL, TTL, I^2L and CMOS and its gate level implementation. A/D converters and D/A converters.

College Level (20%)

Basic hardware description language: Introduction to Verilog/VHDL programming language, Verilog/VHDL program of logic gates, adders, Substractors, Multiplexers, Comparators, Decoders flip-flops, counters, Shift resistors.

Books:

- Digital Design, 3rd Edition, Moris M. Mano, Pearson Education.
- Fundamentals of digital circuits, 8th edition, A. Anand Kumar, PHI
- Digital Fundamentals, 5th Edition, T.L. Floyd and R.P. Jain, Pearson Education, New Delhi.
- Digital Electronics, G. K. Kharate, Oxford University Press.
- Digital Systems Principles and Applications, 10th Edition, Ronald J. Tocci, Neal S. Widemer and Gregory L. Moss, Pearson Education.
- A First Course in Digital System Design: An Integrated Approach, India Edition, John P. Uyemura, PWS Publishing Company, a division of Thomson Learning Inc.
- Digital Systems Principles and Applications, 10th Edition, Ronald J. Tocci, Neal S. Widemer and Gregory L. Moss, Pearson Education.