Renewable Energy Systems

Module I

Energy scenario and renewable energy sources: global and Indian situation. Potential of non-conventional energy sources, economics. Solar Radiation: Solar thermal process, heat transfer devices, solar radiation measurement, estimation of average solar radiation. Solar energy storage: stratified storage, well mixed storage, comparison.

Module II

Hot water system, practical consideration, solar ponds, Non-convective solar pond, extraction of thermal energy and application of solar ponds. Wind energy: The nature of wind. Wind energy resources and modeling. Geothermal energy: Origin and types of geothermal energy and utilization.

Module III

OTEC: Ocean temperature differences. OTEC systems. Recent OTEC developments. Wave energy: Fundamentals. Availability Wave-energy conversion systems. Tidal energy: Fundamentals. Availability Tidal-energy conversion systems; Energy from biomass: Photosynthesis; Biomass resource; Utilization of biomass.

Books

- S.P.Sukhatme, Solar Energy Principle of Thermal Collection and Storage', Tata McGraw Hill, 1990.
- G.L. Johnson, Wind energy systems, Prentice Hall Inc. New Jersey.
- J.M.Kriender, Principles of Solar Engineering', McGraw Hill, 1987.

Reference

- V.S. Mangal, Solar Engineering', Tata McGraw Hill, 1992.
- N.K.Bansal, Renewable Energy Source and Conversion Technology', Tata McGraw Hill, 1989.
- P.J. Lunde, Solar Thermal Engineering', John Willey & Sons, New York, 1988.
- J. A. Duffie and W.A. Beckman, Solar Engineering of Thermal Processes', Wiley & Sons, 1990.