## PHARMACEUTICAL MANUFACTURING TECHNOLOGY (MQA 204T) ## Scope This course is designed to impart knowledge and skills necessary to train the students with the industrial activities during Pharmaceutical Manufacturing. ## **Objectives** At completion of this course it is expected that students will be able to understand. - The common practice in the pharmaceutical industry developments, plant layout and production planning - Will be familiar with the principles and practices of aseptic process technology, non sterile manufacturing technology and packaging technology. - Have a better understanding of principles and implementation of Quality by design (QbD) and process analytical technology (PAT) in pharmaceutical manufacturing THEORY 60 Hrs Pharmaceutical industry developments: Legal requirements 12 and Licenses for API and formulation industry, Plant location-Factors influencing. **Plant layout:** Factors influencing, Special provisions, Storage space requirements, sterile and aseptic area layout. **Production planning:** General principles, production systems, calculation of standard cost, process planning, routing, loading, scheduling, dispatching of records, production control. 2 Aseptic process technology: Manufacturing, manufacturing 12 flowcharts, in process-quality control tests for following sterile Hrs dosage forms: Ointment, Suspension and Emulsion, Dry powder, Solution (Small Volume & large Volume). Advanced sterile product manufacturing technology: Area planning & environmental control, wall and floor treatment, fixtures and machineries, change rooms, personnel flow, utilities & utilities equipment location, engineering and maintenance. Process Automation in Pharmaceutical Industry: With specific reference to manufacturing of sterile semisolids, Small Volume Parenterals & Large Volume Parenterals (SVP & LVP), Monitoring of Parenteral manufacturing facility, Cleaning in Place (CIP), Sterilization in Place (SIP), Prefilled Syringe, Powdered Jet, Needle Free Injections, and Form Fill Seal Technology (FFS). Lyophilization technology: Principles, process, equipment. 3 Non sterile manufacturing process technology: 12 Manufacturing, manufacturing flowcharts, in process-quality Hr control tests for following Non-Sterile solid dosage forms: Tablets (compressed & coated), Capsules (Hard & Soft). Advance non-sterile solid product manufacturing technology: Process Automation in Pharmaceutical Industry with specific reference to manufacturing of tablets and coated products, Improved Tablet Production: Tablet production process, granulation and pelletization equipments, continuous and batch mixing, rapid mixing granulators, rota granulators, spheronizers and marumerisers, and other specialized granulation and drying equipments. Problems encountered. **Coating technology**: Process, equipments, particle coating, fluidized bed coating, application techniques. Problems encountered. - 4 Containers and closures for pharmaceuticals: Types, 12 performance, assuring quality of glass; types of plastics used, Hrs Drug plastic interactions, biological tests, modification of plastics by drugs; different types of closures and closure liners; film wrapper; blister packs; bubble packs; shrink packaging; foil / plastic pouches, bottle seals, tape seals, breakable seals and sealed tubes; quality control of packaging material and filling equipment, flexible packaging, product package compatibility, transit worthiness of package, Stability aspects of packaging. Evaluation of stability of packaging material. - Quality by design (QbD) and process analytical technology (PAT): Current approach and its limitations. Why QbD is required, Advantages, Elements of QbD, Terminology: QTPP. CMA, CQA, CPP, RLD, Design space, Design of Experiments, Risk Assessment and mitigation/minimization. Quality by Design, Formulations by Design, QbD for drug products, QbD for Drug Substances, QbD for Excipients, Analytical QbD. FDA initiative on process analytical technology. PAT as a driver for improving quality and reducing costs: quality by design (QbD), QA, QC and GAMP. PAT guidance, standards and regulatory requirements. 139 ## **REFERENCES** - 1. Lachman L, Lieberman HA, Kanig JL. The theory and practice of industrial pharmacy, 3 ed., Varghese Publishers, Mumbai 1991. - 2. Sinko PJ. Martin's physical pharmacy and pharmaceutical sciences, 5 ed., B.I. Publications Pvt. Ltd, Noida, 2006. - Lieberman HA, Lachman L, Schwartz JB. Pharmaceutical dosage forms: tablets Vol. I-III, 2 ed., CBS Publishers & distributors, New Delhi, 2005. - 4. Banker GS, Rhodes CT. Modern Pharmaceutics, 4 ed., Marcel Dekker Inc, New York, 2005. - 5. Sidney H Willing, Murray M, Tuckerman. Williams Hitchings IV, Good manufacturing of pharmaceuticals (A Plan for total quality control) 3rd Edition. Bhalani publishing house Mumbai. - 6. Indian Pharmacopoeia. Controller of Publication. Delhi, 1996. - 7. British Pharmacopoeia. British Pharmacopoeia Commission Office, London, 2008. - 8. United States Pharmacopoeia. United States Pharmacopeial Convention, Inc, USA, 2003. - 9. Dean D A, Evans E R and Hall I H. Pharmaceutical Packaging Technology. London, Taylor & Francis, 1<sup>st</sup> Edition. UK. - 10. Edward J Bauer. Pharmaceutical Packaging Handbook. 2009. Informa Health care USA Inc. New york. - 11. Shaybe Cox Gad. Pharmaceutical Manufacturing Handbook. John Willey and Sons, New Jersey, 2008.