# MEPE3004 REFRIGERATION AND AIR CONDITIONING (3-0-0)

## **Course Objectives:**

This course provides fundamental knowledge of refrigeration and air conditioning systems, covering vapor compression/absorption cycles, psychrometrics, and comfort air conditioning. Students will analyze system performance (COP, cooling load), compare refrigerants, and design HVAC solutions for diverse applications, including multi-stage systems and thermoelectric refrigeration.

### Module-I: (05 Hours)

Air Refrigeration System: Introduction, Unit of refrigeration, Coefficient of performance, Reversed Carnot Cycle, Temperature limitations, maximum COP, Bell Coleman air cycle, Simple Air Cycle System for Aircraft with problems.

## Module-II: (06 Hours)

Vapour Compression System: Analysis of theoretical vapour compression cycle, Representation of cycle on T - S and p - h diagram, Simple saturation cycle, subcooled cycle and super-heated cycle, Effect of suction and discharge pressure on performance, Actual vapour compression cycle. Problem illustration and solution.

Multi-stage compression and multi-evaporator systems: Different arrangements of compressors and inter-cooling, Multistage compression with inter-cooling, multi-evaporator system, Dual compression system. Simple problems

## Module-III: (8 Hours)

Vapour Absorption System: Simple Ammonia - absorption system, Improved absorption system, Analysis of vapour absorption system (Specifically of analyzing coloumn and rectifier), Electrolux / Three fluid system, Lithium bromide-water vapour absorption system, comparison of absorption system with vapour compression system. Simple Problems and solutions.

Thermoelectric Refrigeration:

Basics and Principle. Defining the figure of Merit. (No Problem)

Refrigerants: Classification of refrigerants and its designation- Halocarbon (compounds, Hydrocarbons, Inorganic compounds, Azeotropes), Properties of refrigerants, comparison of common refrigerants, uses of important refrigerants, Brines. Alternative refrigerants (Organic and inorganic compounds).

# Module-IV: (06 Hours)

Psychometrics: Properties of air-vapour mixture, Law of water vapour-air mixture, Enthalpy of moisture, Psychrometric chart, simple heating and cooling, Humidification, De-humidification, Mixture of air streams. Review question and discussions

Requirements of comfort air conditioning: Oxygen supply, Heat removal, moisture removal, air motion, purity of air, Thermodynamics of human body, comfort and comfort chart, effective temperature, factors governing optimum effective temperature

### Module-V: (05 Hours)

Air Conditioning System: Process in air conditioning, Summer air conditioning, Winter air conditioning and year-round air conditioning, Cooling load calculations. Review question and discussions.

# **Course Outcomes:**

CO1: Remembering (Knowledge): Define key terms (COP, effective temperature) and classify refrigerants (halocarbons, azeotropes).

- CO2: Understanding (Comprehension): Explain vapor compression/absorption cycles, psychrometric processes, and comfort chart principles.
- CO3: Applying (Application): Calculate cooling loads, system performance (COP), and analyze multistage compression/inter-cooling setups.
- CO4: Analyzing (Analysis): Evaluate refrigerant properties and compare system efficiencies (absorption vs. compression, thermoelectric).
- CO5: Creating (Synthesis): Design HVAC systems (summer/winter/year-round) integrating psychrometrics and load calculations for optimal performance.

### Textbooks:

- 1. Refrigeration and Air Conditioning by R.C. Arora, PHI Publication
- 2. Refrigeration and Air Conditioning by S.C. Arora and S. Domkundwar, Dhanpat Rai & Sons. Chapters; 3,4,5,6,7,11,16,17,19,20
- 3. Refrigeration and Airconditioning Data book by Manohar Prasad

### **Reference Books:**

- 1. Refrigeration and Air conditioning by P.L. Balloney, Khanna Publishers.
- 2. Refrigeration and Air conditioning by Manohar Prasad, New Age international publishers.
- 3. Refrigeration and Air conditioning by C.P. Arora, Tata McGraw Hill.