IMQT3001 QUANTITATIVE METHODS - II (3-0-0)

Course Objectives:

- 1. To learn adequate theoretical; concept of Quantitative techniques in various applied field in management decision making
- 2. To understand role of optimization techniques in managerial decision making
- 3. To understand the applications of Theory of Games, Queue Theory, Simulation and future forecasting in managerial setting.

Module-1:Theory of Games:

Concept of Games; Two-Person Zero-Sum Games; Pure Strategies (Minimax and Maximin Principles): Games with Saddle Point; Mixed Strategies: Games without Saddle Point; The rules (Principles) of Dominance; Solution Methods games without Saddle Point(Algebric Method, Arithmetic Method, Graphical Method).

Module-II: Queuing Theory:

The Structure of Queuing System- Characteristics, Queuing Process, Queue Discipline, Service Mechanism; Performance measures of Queuing System-Transition-State and Steady-State; Kendal's notation for representing queueing models, Classification of Queuing Models; Solution of Queuing Model(Single Server, M/M/I: (∞/FCFS).

Module-III: Markov Chains:

Concept, Characteristics of a Markov Chain; Applications of Markov Analysis; State and Transition Probabilities; Multi-Period Transition Probabilities-Procedure for formulate matrix of Transition Probabilities; Procedure for determining Steady-State (Equilibrium) Conditions. Simulation Definition of Simulation; Types of Simulation; Steps of Simulation Process; advantages and Disadvantages of Simulation; Stochastic Simulation and random numbers (Monte Carlo Simulation, random Number Generation). Simulation of Queuing Problems.

Course Outcomes:

- CO-1: Apply game theory models to analyse various real-world scenarios, including business competition, negotiations, and strategic decision-making, to derive optimal strategies and outcomes.
- CO-2: Learn simulation techniques such as Monte Carlo simulation, discrete-event simulation, and agent-based modelling, and be able to design, implement, and analyse simulation experiments to solve problems and make decisions in uncertain environments.
- CO-3: Analyse the properties of Markov chains, including transition probabilities, steady-state distributions, and absorbing states, and apply Markov analysis to model and analyse various real-world phenomena such as customer behaviour, inventory systems, and epidemiological dynamics.
- CO-4: Acquire a deep understanding of queueing theory, including the characteristics of queuing systems, queueing models, and performance metrics.

Books:

- Gupta & Hira, Operations Research, S.Chand.
- Sharma, Operations Research, Macmillan.