EEPC3001 CONTROL SYSTEM (3-0-0)

Course Objectives:

This course provides fundamental knowledge of control systems, covering mathematical modeling, time and frequency domain analysis, stability criteria (Routh-Hurwitz, Nyquist), and controller design (P, PI, PID). Students will learn state-space representation, system simplification techniques, and apply performance indices to analyze and design effective control systems.

Module-I: (08 Hrs.)

Introduction to Control System: Motivation, Open-loop versus Closed Loop Control System, Examples of Control System, Block Diagram of Control System, Principle of Feedback Control System. Mathematical Modelling and Representation of Systems: Mathematical Modelling of Electrical Systems (RLC Series and Parallel Circuits), Mechanical Systems (Mass-Spring-Damper System, Rotational Mechanical System). Analogous System: Force (Torque)-Voltage Analogy and Force (Torque)-Current Analogy. Introduction to Laplace Transformation and Important Formulas. Transfer Functions: Open-Loop and Closed-Loop Transfer Functions. Block Diagram Algebra: Block Diagram Reduction Techniques, Signal flow graph, Mason's gain formula.

Module-II: (06 Hrs.)

Transient and Steady State Analysis of Linear Time-Invariant (LTI) Systems: Introduction to LTI systems, Standard Test Signals, Time Response of First Order System, Time Response of Second Order System, Time Response Specifications. Steady-State Error and Error Constants. Effect of Adding Zeroes to a System. Performance Indices: ISE, ITSE, IAE, ITAE Indices Comparison.

Module-III: (08 Hrs.)

Frequency Domain Stability Analysis of LTI System: Routh Hurwitz Criteria, Stability Analysis using Root Locus, Stability Analysis using Bode Plot and Nyquist Criteria.

Module-IV: (04 Hrs.)

Controller and Compensator Design: P, PI, and PID Controller Design, Lag, Lead and Lead-Lag Compensator Design.

Module-V: (04 Hrs.)

Analysis of Control Systems in State Space: Introduction, State-Space Representations of Transfer-Function Systems, Solving the Time-Invariant State Space Model, Controllability and Observability.

Course Outcomes:

On completion of this course, students are able to:

- CO-1: Develop the mathematical model of the physical systems and simplify the complicated system.
- CO-2: Employ time domain analysis to predict and diagnose transient performance parameters of the system for standard input functions.
- CO-3: Formulate different types of analysis in the frequency domain to explain the nature of the stability of the system
- CO-4: Identify the needs of different types of controllers and compensators to ascertain the required dynamic response from the system.
- CO-5: Model and Analyse state space representation of LTI system to check the controllability and observability

Text Book(s):

- 1. K. Ogata, Modern Control Engineering, Pearson Education India, 2015
- 2. I.J. Nagrath and M. Gopal, Control System Engineering, New age international Publishers, 2009.
- 3. Norman S. Nise, Control Systems Engineering, Willey India Pvt. Ltd., 2024

Reference Book(s):

- 1. R.C. Dorf and R.H.Bishop, Modern Control System, Pearson Education, 2017.
- 2. B.C. Kuo, Automatic Control System, Prentice Hall, 1990.
- S. Hasan Saeed, Automatic Control Systems (with Matlab Programs), Katson Books, 2017.