DSPE3003 COMPUTER VISION (3-0-0)

Course Objectives:

- To introduce the foundational principles and techniques in computer vision.
- To equip students with practical knowledge to build applications involving image and video analysis.
- To understand image processing, feature extraction, object detection, and deep learning-based vision systems.

Module-I: (08 hours)

Introduction to Computer Vision

Overview and Applications of Computer Vision , Human vs Computer Vision, Imaging geometry and camera model, Digital image formation and representation, Color spaces and conversions. Image formation:

Geometric Camera Models, Intrinsic and Extrinsic Parameters, Geometric Camera Calibration – Linear and Non – linear approach, Light and Shading - Inference from, Modeling Inter reflection, Human Color Perception

Module-II: (08 hours)

Image Processing and Filtering

Image Enhancement (smoothing, sharpening), Edge detection (Sobel, Prewitt, Canny), Morphological operations, Histograms and thresholding (global, adaptive)

Early vision:

Linear Filters - Convolution, Fourier Transforms, Sampling and Aliasing, Filters as Templates, Correlation, Local Image Features - Computing the Image Gradient, Gradient Based Edge Detectors, Orientations, Texture - Local Texture Representations Using Filters, Shape from Texture

Module-III: (08 hours)

Feature Detection and Matching

Corner detection (Harris, FAST), SIFT, SURF, ORB, Feature descriptors and matching, RANSAC and Homography.

Mid-level vision:

Segmentation by Clustering - Basic Clustering Methods, The Watershed Algorithm, Segmentation Using K-means, Grouping and Model Fitting - Fitting Lines with the Hough Transform, Fitting Curved Structures, Tracking - Tracking by Detection, Tracking Translations by Matching, Tracking Linear Dynamical Models with Kalman Filters

Module-IV: (08 hours)

Object Recognition and Segmentation

Object detection techniques (Haar cascades, HOG+SVM), Image segmentation (region growing, watershed, graph-cut), Introduction to CNNs for object detection (YOLO, SSD), Semantic and instance segmentation.

Object detection and recognition:

Detecting Objects in Images - The Sliding Window Method, Face Detection, Detecting Humans, Boundaries and Deformable Objects, Object Recognition - Categorization, Selection, Applications - Tracking People, Activity Recognition

Module-V: (08 hours)

Motion Analysis and 3D Vision

Optical flow (Lucas-Kanade, Horn-Schunck), Structure from motion (SfM), Stereo vision and depth estimation, 3D reconstruction basics.

Course Outcomes (COs):

- 1. Understand the theoretical concepts and models behind image analysis and computer vision.
- 2. Apply image processing techniques for real-world applications.
- 3. Extract and match features to recognize and track objects.
- 4. Implement modern object detection and segmentation pipelines using deep learning.
- Analyze motion and depth from video/image sequences to interpret the 3D environment.

Text Books:

- 1. Forsyth, Jean Ponce David A. "Computer Vision: A Modern Approach", Second Edition, Pearson Education Limited 2015.
- 2. Szeliski, Richard, "Computer vision: algorithms and applications", Springer Science & Business Media, 2010.

Reference Books:

- 1. Hau, Chen Chi, "Handbook of pattern recognition and computer vision", World Scientific, Fifth Edition, 2015.
- 2. Muhammad Sarfraz, "Computer Vision and Image Processing in Intelligent Systems and Multimedia Technologies", IGI Global, 2014.
- 3. Theo Gevers, ArjanGijsenij, Joost van de Weijer, Jan-Mark Geusebroek "Color in Computer Vision: Fundamentals and Applications", Wiley, 2012.
- 4. Kale, K. V, Mehrotra S.C, Manza. R.R., "Advances in Computer Vision and Information Technology", IK International Pvt Ltd, 2013.