CSPE3005 CRYPTOGRAPHY AND NETWORK SECURITY (3-0-0)

Course Objectives:

- Explain the importance and application of each of confidentiality, integrity, authentication and availability
- Understand various cryptographic algorithms.
- Understand the basic categories of threats to computers and networks
- Describe public-key cryptosystem.
- Describe the enhancements made to IPv4 by IPSec
- Understand Intrusions and intrusion detection

Module-I: Cryptographic Concepts (12 hrs)

Security Concepts: Introduction, The need for security, Security approaches, Principles of security, Types of Security attacks, Security services, Security Mechanisms, A model for Network Security Cryptography Concepts and Techniques: Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, steganography, key range and key size, possible types of attacks.

Module-II: Symmetric and Asymmetric Key Algorithms (08 hrs)

Symmetric key Ciphers: Block Cipher principles, DES, AES, Blowfish, RC5, IDEA, Block cipher operation, Stream ciphers, RC4. Asymmetric key Ciphers: Principles of public key cryptosystems, RSA algorithm, Diffie-Hellman Key Exchange, Knapsack Algorithm.

Module-III: Cryptographic Hash Functions(12 hrs)

Cryptographic Hash Functions: Message Authentication, Secure Hash Algorithm (SHA-512), Message authentication codes: Authentication requirements, HMAC, CMAC, Digital signatures, Elgamal Digital Signature Scheme. Key Management and Distribution: Symmetric Key Distribution Using Symmetric & Asymmetric Encryption, Distribution of Public Keys, Kerberos, X.509 Authentication Service, Public – Key Infrastructure

Module-IV: Transport-Laver Security (06 hrs)

Transport-level Security: Web security considerations, Secure Socket Layer and Transport Layer Security, HTTPS, Secure Shell (SSH) Wireless Network Security: Wireless Security, Mobile Device Security, IEEE 802.11 Wireless LAN, IEEE 802.11 Wireless LAN Security

Module-V: Network-Layer Security with Case Studies (07 hrs)

E-Mail Security: Pretty Good Privacy, S/MIME IP Security: IP Security overview, IP Security architecture, Authentication Header, Encapsulating security payload, Combining security associations, Internet Key Exchange Case Studies on Cryptography and security: Secure Multiparty Calculation, Virtual Elections, Single sign On, Secure Inter-branch Payment Transactions, Cross site Scripting Vulnerability

Course Outcomes:

At the end of this course the students will be able to:

- CO1: Student will be able to understand basic cryptographic algorithms, message and web authentication and security issues.
- CO2: Ability to identify information system requirements for both of them such as client and server.
- CO3: Ability to understand the current legal issues towards information security

Text Books:

- 1. Cryptography and Network Security Principles and Practice: William Stallings, Pearson Education, 6th Edition
- 2. Cryptography and Network Security: Atul Kahate, Mc Graw Hill, 3rd Edition

Reference Books:

- Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, 1st 1. Edition.
- Cryptography and Network Security: Forouzan Mukhopadhyay, Mc Graw Hill, 3rd Edition 2.
- Information Security, Principles, and Practice: Mark Stamp, Wiley India. Principles of Computer Security: WM. Arthur Conklin, Greg White, TMH 3.
- 4.
- Introduction to Network Security: Neal Krawetz, CENGAGE Learning 6. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning 5.