AUPE3001 AUTOMOTIVE FUELS AND LUBRICANTS (3-0-0)

Course Objectives:

- 1. To study the types and properties of automotive fuels and methods of fuel testing.
- 2. To understand the combustion process in SI and CI engines and the role of additives.
- 3. To explore the types, properties, and applications of lubricants in vehicles.
- 4. To familiarize with various alternative fuels and their influence on performance and environment.
- 5. To analyze the impact of fuels and lubricants on vehicle emissions and after-treatment systems.

Module-I Fuel Properties and Testing (08 Hours)

Types of automotive fuels: Gasoline, Diesel, Kerosene. Key properties: calorific value, density, volatility, sulphur content.

Performance parameters:

Octane number – significance in SI engines, knocking tendency. Cetane number – ignition delay in CI engines.

Fuel testing methods:

ASTM distillation test, Reid vapor pressure test. Flash point, fire point, pour point, cloud point. Bomb calorimeter for calorific value determination. Distillation curve and its effect on drivability.

Module-II Combustion and Additives (07 Hours)

Combustion processes in:

Spark Ignition (SI) Engines – pre-ignition, detonation. Compression Ignition (CI) Engines – knocking, delay period.

Stoichiometry, air-fuel ratio, lean and rich mixtures. Additives for gasoline: Tetraethyl lead (TEL), MTBE, ethanol blending. Additives for diesel: Cetane improvers, anti-smoke additives, cold flow improvers. Fuel stability and storage requirements.

Module-III Lubricants (09 Hours)

Classification of lubricants: Engine oils, gear oils, greases, transmission fluids. Properties: Viscosity index, pour point, cloud point, flash point, thermal stability, anti-wear characteristics. Additives in lubricants: anti-wear, anti-oxidant, detergent, dispersant. SAE and API classification of oils (SAE 10W-30, API SN). Lubrication mechanisms: boundary, hydrodynamic, and elastohydrodynamic lubrication. Application of lubricants in engines, gearboxes, and differentials. Used oil analysis and condition monitoring.

Module-IV Alternative Fuels (08 Hours)

Gaseous fuels:

Compressed Natural Gas (CNG): composition, storage, injectors. Liquefied Petroleum Gas (LPG): handling, mixing, combustion.

Liquid fuels:

Alcohols (Methanol, Ethanol): blend ratios, effects on performance. Biodiesel: feedstocks, transesterification, fuel properties, B5 to B100 grades.

Emerging fuels: Hydrogen, synthetic fuels (e-fuels), ammonia. Dual-fuel and flexible fuel vehicle systems. Comparison of engine performance, efficiency, emissions, and durability.

Course Outcomes:

On successful completion of this course, students will be able to:

- CO1: Analyze different fuel types and interpret their key performance parameters through standard tests.
- CO2: Explain combustion characteristics and the function of fuel additives in engine performance.
- CO3: Classify automotive lubricants and assess their behavior in various conditions. CO4: Evaluate the feasibility, advantages, and limitations of alternative fuels.
- CO5: Examine the role of fuels and lubricants in controlling automotive emissions and their compatibility with emission control technologies.

Module-V Emission Control and Environmental Impact (08 Hours)

Effect of fuel composition on tailpipe emissions: CO, HC, NOx, particulate matter. Influence of lubricant additives and base oil on engine-out emissions. Emission norms: Bharat Stage VI, Euro VI – fuel and lubricant compliance.

After-treatment systems:

Catalytic converters, particulate filters, SCR (Selective Catalytic Reduction). Compatibility of fuels and lubricants with emission systems.

Role of low-sulphur fuel and synthetic lubricants in emission reduction. Greenhouse gas emissions and global warming potential (GWP) of fuels.

Textbooks:

- 1. Ganesan, V., Internal Combustion Engines, McGraw Hill.
- 2. Mathur and Sharma, A Course in Internal Combustion Engines, Dhanpat Rai Publications.
- 3. Gupta, H.N., Fundamentals of Internal Combustion Engines, PHI.

Reference Books:

- 1. Bosch Automotive Handbook, Robert Bosch GmbH, Wiley.
- 2. Heywood, J.B., Internal Combustion Engine Fundamentals, McGraw Hill.
- 3. Speight, J.G., The Chemistry and Technology of Petroleum, CRC Press.