AUPC3003 VEHICLE BODY ENGINEERING (3-0-0)

Course Objectives:

- 1. To understand the concepts of vehicle body types, styling, ergonomics, and comfort.
- 2. To study materials and fabrication methods used in body construction.
- 3. To analyze vehicle aerodynamics and its influence on performance and fuel efficiency.
- 4. To gain knowledge on crashworthiness, safety norms, and NVH mitigation strategies.

Module-I Introduction to Body Design (07 Hours)

Classification of vehicle bodies: sedan, hatchback, SUV, MPV, coupe, convertible, pickup. Body-on-frame and monocoque (unitary) construction – features and applications. Ergonomics: driving position, visibility angles, ingress/egress, control placement. Aesthetic design and styling: concept sketches, surface development, clay modeling. Visibility and space requirements: driver and passenger visibility, luggage space. Current trends: crossover designs, modular platforms.

Module-II Body Materials and Manufacturing (08 Hours)

Common materials: mild steel, high strength steel (HSS), aluminum alloys, fiber-reinforced plastics (FRP), carbon fiber. Material selection criteria: strength, weight, manufacturability, corrosion resistance, cost. Sheet metal forming processes: blanking, deep drawing, hemming, hydroforming. Joining techniques:

Mechanical: riveting, clinching, bolting. Thermal: spot welding, MIG/TIG, laser welding. Adhesive bonding: types, applications, hybrid joining.

Surface treatment: painting, e-coating, anti-corrosion layers. Smart materials: shape memory alloys, self-healing coatings.

Module-III Aerodynamics (09 Hours)

Importance of aerodynamics in fuel economy, performance, and stability. Fundamental forces: drag (form, skin friction, interference), lift, side force. Drag coefficient, lift coefficient – definitions and factors affecting them. Aerodynamic shapes for different vehicle classes (cars, buses, trucks). Devices for aerodynamic enhancement: spoilers, diffusers, undertrays. Wind tunnel testing: types (open jet, closed circuit), models, test instrumentation. Computational Fluid Dynamics (CFD) basics and software used (e.g., ANSYS Fluent).

Module-IV Safety and Crashworthiness (08 Hours)

Introduction to vehicle safety: active and passive safety systems. Crashworthiness terminology: crumple zones, intrusion resistance, load paths. Crash energy management: deformation mechanisms and reinforcements. Side, frontal, rear impact and rollover protection. Occupant protection systems: airbags, seat belts, child restraint systems. Crash test types and dummies (Hybrid III, THOR). Global safety standards and NCAP testing (Euro NCAP, GNCAP, AIS-098).

Module-V NVH and Comfort (08 Hours)

Sources of noise and vibration in vehicles: engine, road, wind, transmission. Noise path analysis and structure-borne vs. airborne noise. NVH countermeasures: damping materials, absorbers, insulators, active noise control. Vehicle interior acoustics: reverberation and insulation materials. Thermal comfort systems: layout and functioning of HVAC (Heating, Ventilation, and Air Conditioning). Air circulation types: fresh air vs. recirculation, multi- zone climate control. Cabin sealing and vibration damping techniques for improved comfort.

Course Outcomes:

Upon completion of the course, students will be able to:

- CO1: Identify types and characteristics of vehicle bodies and apply ergonomic principles.
- CO2: Explain the materials and joining techniques used in modern automotive body construction.
- CO3: Analyze aerodynamic characteristics and apply principles to reduce drag.
- CO4: Evaluate crashworthiness features, safety standards, and passive safety systems.
- CO5: Assess NVH levels and design for comfort and thermal management.

Textbooks:

- 1. Powloski, J., Vehicle Body Engineering, Business Books Limited.
- 2. Reimpell, J., and Stoll, H., The Automotive Chassis Volume 2: System Design, Butterworth-Heinemann.
- 3. Giles, J.G., Body Construction and Design, Butterworths.

Reference Books:

- 1. Jason C. Brown, Vehicle Aerodynamics, SAE International.
- 2. R.K. Rajput, Automobile Engineering, Laxmi Publications.
- 3. John Fenton, Handbook of Vehicle Design Analysis, SAE.