MCYE104 Quantum Chemistry and Group Theory (3-1-0)

(4 credits)

Module-I (12 hours)

Quantum Chemistry-I: Operators in Quantum mechanics: Linear, Hermitian and Angular Momentum operators, Eigenvalue problem.

Basic postulates of quantum mechanics. The Schrodinger equation, Particle in 1,2 and 3-dimensional boxes, degeneracy.

Module-II (8 hours)

Quantum Chemistry-II: Harmonic oscillator, Spherical Coordinates: Rigid rotator, Solution of the Schrodinger equation for Hydrogen like atoms, Significance of n, I and m quantum numbers. Linear Variation and Perturbation Methods. Multielectron atoms, spin quantum number, Ground and excited state of helium atom.

Module-III (10hours)

Quantum Chemistry-III: Hydrogen Molecule ion, Born-Oppenheimer approximation, LCAO-MO approximation, Hydrogen Molecule, Valence Bond and Molecular Orbital Theory. Homonuclear and heternuclear diatomic molecules (HF, CO, NO)

Module-IV (10 hours)

Group Theory: Symmetry Elements and Symmetry Operations, Point Groups, Representation of Groups, Reducible and Irreducible Representation; Character Tables, Applications of Great Orthogonality Theorem.

Text Books (Quantum Chemistry and Group Theory)

- 1. D. A. McQuarrie and J. D. Simon, Physical Chemistry: A Molecular Approach, Viva Student Edition, 2015.
- 2. D. A. McQuarrie, Quantum Chemistry, Viva Student Edition, 2015.
- 3. M. S. Gopinathan and V. Ramakrishnan, Group Theory in Chemistry, Vishal Publishers, 1988.
- 4. Cotton, F. A. Chemical Applications of Group Theory, 3rd Edn., John Wiley and Sons, 2003.

Reference Books

- 1. N. Levine, 'Quantum Chemistry', 4th Edn., Prentice Hall India, 2001.
- 2. A. K. Chandra, Introductory Quantum Chemistry, Tata McGraw Hill, 1994.
- 3. Jack Simons, Introduction to Theoretical Chemistry, Cambridge University Press, 2003.
- 4. P. W. Atkins, Molecular Quantum Mechanics, Oxford University Press (1986).