7th Semester

7 th Semester RME7D006	Micro and Nano Machining	L-T-P	3 Credits
		3-0-0	

Module-I:

Introduction

Introduction, Basic elements of molecular dynamics modelling, Design and requirements forstate-of-the-art MD cutting process simulations, Capabilities of MD for nanoscale materialremoval process analysis, Advances and recent developments in material removal processsimulation, Summary.

Ductile Mode Cutting of Brittle Materials

The mechanism of ductile mode cutting of brittle materials, The chip formation in cutting ofbrittle materials, Machined surfaces in relation to chip formation mode

Diamond Tools in Micromachining

Diamond technology, Preparation of substrate, Modified HFCVD process, Nucleation and diamond growth, Deposition on complex substrates, Diamond micromachining.

Module-II: (8 hours)

Conventional Processes: Micro-turning, Micro-drilling and Micro-milling

Introduction, Micro-turning, Micro-drilling, Micro-milling, Product quality in micromachining

Micro-grinding and Ultra-precision Processes

Introduction, Micro and nanogrinding, Nanogrinding tools

Module-III:

Non-Conventional Processes: Laser Micromachining

Introduction, Fundamentals of lasers, Laser microfabrication, Laser nanofabrication. **Evaluation of Subsurface Damage in Nano and Micromachining** Destructive evaluation technologies, Non-destructive evaluation technologies

Module-IV:

Micro and Nano Finishing Processes

Need for Nano finishing, Magnetic abrasive Finishing, Magnetorheological Finish, ElasticEmission Finishing, Magnetic Float Polishing, Ion Beam finishing. **Micro Joining**

Challenges, Micro Resistance welding, Ultrasonic welding, Micro TIG, Applications.

Applications of Nano and Micromachining in Industry

Typical machining methods, Applications in optical manufacturing, Semiconductor and electronics related applications.

Books:

- [1] J. Paulo Davim, Mark J. JacksonNano and Micromachining, John Wiley & Sons, 2013
- [2] Mark. J. Jackson, Micro and Nano-manufacturing, Springer, 2006.
- [3] Mark. J. Jackson, Micro-fabrication and Nano-manufacturing Pulsed water drop micromachining CRC Press 2006.
- [4] NitaigourPremchandMahalik, Micro-manufacturing and Nanotechnology, 2006.
- [5] V.K.Jain, Micro-manufacturing Processes, CRC Press, 2012.
- [6] Yi Qin, Micro-manufacturing Engineering and Technology, William Andrew, 2015

(12 hours)

(8 hours)

(10 hours)