| 7 <sup>th</sup> Semester REL7D002 | High Voltage Systems and | L-T-P | 3 Credits |
|-----------------------------------|--------------------------|-------|-----------|
|                                   | DC Transmission          | 3-0-0 |           |

Module I: (10 Hours)

Introduction: Design, planning and layout of H.V. laboratories Conduction and breakdown in Gaseous Dielectrics: Townsend's current growth equation, current growth in the presence of secondary processes, and streamer theory of breakdown in gases. Breakdown in non-uniform fields and corona. Conduction and Breakdown in Liquid dielectrics: Pure liquids and commercial liquids, conduction and breakdown in commercial liquids. Breakdown and pre-breakdown phenomena in solid Dielectrics: Intrinsic breakdown, electromechanical breakdown, thermal breakdown.

Module II: (10 Hours)

Generation of High voltages: Generation of high D.C. voltage, high A.C. voltage, impulse voltage, impulse current, tripping and control of impulse generators. Measurement of high voltages and current: Measurement of high D.C., A.C. and impulse. Measurement of D.C. resistivity, dielectric constant and loss factor, partial discharge and Condition monitoring. H.V. Testing of Electrical Apparatus: Testing of insulators, bushings, isolators, circuit breakers, cables, transformers, and surge diverters.

Module III: (12 Hours)

HVDC Transmission System: DC Power Transmission Technology: Introduction, Comparison of AC and DC Transmission, Application. Analysis of HVDC Converters: Choice of converter configuration, Graetz circuit, Convertor bridge characteristics, Characteristics of a twelve pulse converters, Converter and HVDC system Control: Principles of DC Link control, Converter control characteristics, System control hierarchy Firing angle control, current and extinction angle control, Starting and stopping of DC link, Power Control.

Module IV: (6 Hours)

Smoothing Reactor and DC Line: Smoothing reactors, DC Line, transient over voltages in DC Line, Protection of DC line, DC breakers, Monopolar operation, Effects of proximity of AC and DC Transmission lines. Reactive Power Control: Reactive power requirements in steady state, Sources of reactive power, Static var systems, Reactive power control during transients. Harmonics and Filters: Generation of Harmonics, Design of AC Filters, DC Filters, Carrier frequency and RI noise. Multiterminal DC systems: Potential applications of MTDC systems, Types of MTDC systems, control and protection of MTDC systems study of MTDC systems.

## **Books:**

- [1] M. S. Naidu and V. Kamaraju, High Voltage Engineering, Tata McGraw Hill, 1995
- [2] E.W. Kimbark, *Direct Current Transmission-vol.1*, Wiley Inter science, New York, 1971
- [3] J. Kuffel and W. S. Zaengl, High Voltage Engineering: Fundamentals, Newnes, 2000
- [4] J. Arrillaga, HVDC Transmission, IET, Peter Pereginver Ltd., London, U.K, 1998

## Digital

Course Name: High Voltage Engineering

Course Link: https://nptel.ac.in/courses/108/104/108104048/

Course Instructor: Prof. Ravindra Arora, IIT Kanpur

Course Name: High Voltage DC Transmission

Course Link: https://nptel.ac.in/courses/108/104/108104013/

Course Instructor: Dr. S.N. Singh, IIT Kanpur

## Learning Resources: