Module I:

Review of the structure of a Power System and its components. Per unit calculations. Analysis of Power Flows: Formation of Bus Admittance Matrix. Real and reactive power balance equations at a node. Load and Generator Specifications. Application of numerical methods for solution of nonlinear algebraic equations – Gauss Seidel, Coupled and Decoupled Newton-Raphson methods for the solution of the power flow equations. Regulating Transformers.

Module II:

Economic Operation and Management of Power System: Basic Pricing Principles: Generator Cost Curves, Utility Functions, Economic Operation with and without Transmission losses, Transmission loss coefficient, Economic Dispatch, Unit Commitment, Function of Load Dispatch Centres. Demand side-management.

Module III:

Control of Frequency and Voltage: Turbines and Speed-Governors, Frequency dependence of loads, Droop Control and Power Sharing. Automatic Generation Control. Generation and absorption of reactive power by various components of a Power System. Excitation System Control in synchronous generators, Automatic Voltage Regulators, ALFC of Single and Two Area Systems.

Module IV:

Power System Stability: The Stability Problem, Rotor Dynamics and the Swing Equation, The Power-Angle Equation, Synchronizing Power Coefficients, Equal- Area Criterion for Stability, Multimachine Stability Studies: Classical Representation, Step-By-Step Solution of the Swing Curve, Factors Affecting Transient Stability.

Books:

- [1] J. Grainger and W. D. Stevenson, "Power System Analysis", McGraw Hill Education, 1994.
- [2] O. I. Elgerd, "Electric Energy Systems Theory", McGraw Hill Education, 1995.
- [3] D. P. Kothari and I. J. Nagrath, "Modern Power System Analysis", McGraw Hill Education, 4th Edition, 2011.
- [4] Power System Analysis- By Hadi Saadat, TMH, 2002 Edition, Eighth Reprint.
- [5] C.L. Wadhwa, "Electrical Power Systems", New Age International Publishers, 6th Edition.
- [6] A. R. Bergen and V. Vittal, "Power System Analysis", Pearson Education Inc, 1999.

Digital Learning Resources:

Course Name:	Power System Analysis
Course Link:	https://nptel.ac.in/courses/108/105/108105067/

(10 hours)

(10 hours)

(8 hours)

(12 hours)

6th Semester

Course Instructor:	Prof. A K Sinha,	IIT Kharagpur
	/	

Course Name:	Power System Analysis
Course Link:	https://nptel.ac.in/courses/117/105/117105140/
Course Instructor:	Prof. D Das, IIT Kharagpur
Course Name:	Power System Analysis
Course Link:	https://nptel.ac.in/courses/108/104/108104051/
Course Instructor:	Prof. Arindam Ghosh, IIT Kanpur
Course Name:	Computer Aided Power System Analysis
Course Link:	https://nptel.ac.in/courses/108/107/108107028/
Course Instructor:	Dr. Vinay Pant and Dr. B. Das, IIT Roorkee