5 th	RCS5C002	Database Management	L-T-P	3
Semester		Systems	3-0-0	Credits

Objectives

☐ To learn data models, conceptualize and depict a database system using ER diagram

☐ To understand the internal storage structures in a physical DB design

☐ To know the fundamental concepts of transaction processing techniques

Module I: (5 hours)

Introduction: Purpose of Database System — Views of data — data models, database management system, three-schema architecture of DBMS, components of DBMS. E/R Model - Conceptual data modelling - motivation, entities, entity types, attributes relationships, relationship types, E/R diagram notation, examples.

Module II: (10 hours)

Relational Model: Relational Data Model - Concept of relations, schema-instance distinction, keys, referential integrity and foreign keys, relational algebra operators, SQL - Introduction, data definition in SQL, table, key and foreign key definitions, update behaviours. Querying in SQL, notion of aggregation, aggregation functions group by and having clauses, embedded SQL

Module III: (7 hours)

Database Design: Dependencies and Normal forms, dependency theory - functional dependencies, Armstrong's axioms for FD's, closure of a set of FD's, minimal covers, definitions of 1NF, 2NF, 3NF and BCNF, decompositions and desirable properties of them, algorithms for 3NF and BCNF normalization, 4NF, and 5NF

Module IV: (10 hours)

Transactions: Transaction processing and Error recovery - concepts of transaction processing, ACID properties, concurrency control, locking based protocols for CC, error recovery and logging, undo, redo, undo-redo logging and recovery methods.

Module V: (8 hours)

Implementation Techniques: Data Storage and Indexes - file organizations, primary, secondary index structures, various index structures - hash-based, dynamic hashing techniques, multi-level indexes, B+ trees.

Outcomes

Ability to Install,	configure, ar	nd interact with	n a relational	database manageme	nt system
Ability to master	the basics of	SQL and cons	truct queries	using SQL	
Ability to design	and develop	a large databas	se with optim	nal query processing	

Books:

- [1] A. Silberschatz, Henry F. Korth, and S. Sudharshan, "Database System Concepts", 7th Ed, Tata McGraw Hill, 2019.
- [2] C. J. Date, A. Kannan and S. Swamynathan, "An Introduction to Database Systems", 8thed, Pearson Education, 2006
- [3] RamezElmasri and Shamkant B. Navathe, "Fundamentals of Database Systems", 7thEdition, Pearson/Addisionwesley, 2016

[4] Raghu Ramakrishnan, "Database Management Systems", Third Edition, McGraw Hill, 2003

Digital Learning Resources:

Course Name: Fundamentals of DatabaseSystems

Course Link: https://nptel.ac.in/courses/106/104/106104135/

Course Instructor: Dr. Arnab Bhattacharya, IIT, Kanpur

Course Name: Introduction to DatabaseSystems

Course Link: https://nptel.ac.in/courses/106/106/106106220

Course Instructor: Prof. P.Sreenivasa Kumar, IIT, Madras