1 st Semester	MCA01002	Computer System Architecture	L-T-P	3
			3-0-0	CREDITS

Module – I:

Introduction: Review of basic computer architecture, Quantitative techniques in computer design, measuring and reporting performance.

Module – II:

Pipelining: Basic concepts, Instruction and Arithmetic pipeline, Data hazards, Control hazards and Structural hazards, Techniques for handling hazards. Exception handling. Pipeline optimization techniques.

Module – III:

Hierarchical memory technology: Inclusion, Coherence and locality properties, Cache memory organizations, Techniques for reducing cache misses; Virtual memory organization, Mapping and Management techniques, Memory replacement policies.

Module – IV:

Instruction-level Parallelism: Basic concepts, Techniques for increasing ILP, Superscalar, Superpipelined and VLIW Processor architectures. Array and Vector processors

Module – V:

Multiprocessor architecture: Taxonomy of Parallel Architectures, Centralized shared- memory architecture, Synchronization, Memory consistency, Interconnection networks. Distributed shared memory architecture. Cluster computers

Books:

- 1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, Tata McGraw Hill, 2002.
- 2. William Stallings, "Computer Organization and Architecture Designing for Performance", Sixth Edition, Pearson Education, 2003.
- 3. Patterson, "Computer Organisation and Design", Elsevier
- 4. John P Hayes, "Computer Organization", McGraw Hill
- 5. Morris Mano," Computer System Architecture", PHI

(08 Hours)

(**08 Hours**)

(08 Hours)

(08 Hours)

(08 Hours)