

ectives

To make the student understand the geometry of complex forms and to generate ideas for creative structural solutions. To introduce the concept and application of space syntax.

Module1

Evolution of forms through different period of history;vaults, flying buttresses, tents, masted structures & bridges through ancient & medieval history; Post Industrial modular construction of large span & suspension structures in steel and concrete- examples of iconic projects.

Module 2

Properties and application of Platonic solids, Archimedean solids - different types of Polyhedra, pairs of related tetrahedral forms, Compounds of stellated dodecahedron; Prism and its specializations, Antiprism and Dipyramid.

Module 3

Thin shell structures - properties, construction materials and application, Geodesic dome; Tensile structures - types of pneumatic structures; Suspended cable structures - types of cable network systems, shapes of cable suspended systems; Ellipsoid, hyperboloids and parabolic intersections.

Module 4

Introduction to the concept of Space Syntax, application in analysing spatial configuration of buildings, settlements, and urban texture and geometry.

Module 5

Different Parametric form generation using simulation tools and techniques or model making as decided by the faculty.

References

- 1. Gasson, Peter C., Geometry of spatial forms, Ellis Horwood/John Wiley, Chichester/New York, 1983.
- 2. Al-Sayed, K., Turner, A., Hillier, B., Iida, S., Penn, A., Space Syntax methodology, UCL: London, 2014.