DEIAILED SYШABUS OF 5 YEAR B.ARCH PROGRAMME

SEMESTERI

THEORY

AH113	Applied Mathematics	HR 3-0-0	CR-3

Objective

The course is aimed to develop basic mathematical techniques required to support architectural and engineering concepts, and is also oriented to understand and analyse practical engineering problems. The course modules cover statistics and linear programming, which will enable the students to analyse field study data and formulate mathematical models.

Module I

GEOMEIRY AND MEASUREMENTS

Proportion, Golden ratio, Euclidean geometry, Methods to calculate areas, surface areas of solids and volumes for various geometric al shapes (types of curves) and volumes (cube, sphere, cone, cylinder)

Module 2

CALCULUS\&APPUCATIONS
Methods of differentiation. Calc ulus of one variable
Fundamentals of Integral calculus, Maxima and Minima for a function of one variable, Reduction Formulae, Calculation of areas using integrals: Area bounded by curve - Arc length of curve.

Module 3

MATRICES\&BASICSOFUNEAR PROGRAMMING
Elementary rows \& column transformation, Gauss elimination \& solution of System of equations, Inverse matrix.
Formulation of Linea rProgra mming, Graphic al solution, Simplex method.

Module 4

STATISIICS

Measures of central tendency, Mean/ Median mode, measures of dispersion (Mean derivation/ Standard Derivation, Va riance), Co-relation a nd Regression.

Module 5

Relevant mathematical topicsasdecided by the subject faculty

References

1. Kreyszig, E., Advanced Engineering Mathematics. Hoboken: J ohn Wiley \& Sons, 2007.
2. Grewal B.S., HigherEngineering Mathematic s, 35th edition, Kha nna Publishers, 2000.
3. Ka poor,V. K. and Gupta, S. C., Funda mentals of Mathematic al Statistics, Sultan \& Sons
4. Kalavathy, S., Operation Research, VikasPublishing House Pvt. Ltd., 2009
5. Boucher, J. S., 1857, Mensuration, Plane and Solid, Longman, Brown, Green, Longmans and Robert, London.
